<strike id="aqcwk"></strike>
<strike id="aqcwk"></strike>
  • 
    
  •   設(shè)為主頁(yè) 加入收藏 English
     
     
     
     產(chǎn)品資料
     技術(shù)資料
     參考文獻(xiàn)
     
     

    Bilayer Alteration from Ultrasound-Induced Microbubble Cavitation

    文件大小:2.07
    發(fā)布時(shí)間:2020-09-15
    下載次數(shù):0

    作者 Walsh, Martin Phillip

    Drexel University

     

    摘要:The ability of ultrasound-induced cavitation of microbubbles to impact cells is firmly established, but the mechanism by which the acoustic phenomena affects the phospholipid bilayers are not fully understood. Here, we examine the interactions of acoustically driven microbubbles by themselves and in two other different architectures: microbubbles mixed with liposomes and microbubbles tethered to liposomes. Using a combination of ultrasound acoustic spectra and the Wrenn modified RPNNP colloidal model, we observe the effects of microbubble size distribution, radius, and shell chemistry, along with ultrasound frequency and peak negative pressure on the cavitation behavior of the microbubble. We identify the ultrasound intensities corresponding to stable and inertial cavitation and concomitant acoustic microstreaming and shockwave to reversible and irreversible pore formation, respectively, for each architecture.

    The size distribution of microbubbles are similar between the two different chemistries, but with the use of size isolation by differential centrifugation, different size distribution and polydispersity were observed. The decrease in the polydispersity of the microbubbles increased the growth rate of microbubbles destroyed, while the microbubbles with a higher concentration of microbubbles above a micron had a higher amount of acoustic activity. The increase in the frequency slowed the growth rate of microbubbles destroyed from inertial cavitation, while shifting the onset of inertial cavitation to a higher pressure and as the acoustic activity decreased. The addition of polyethylene glycol increased the shell’s area expansion modulus which had a similar effect as an increase in frequency.

    下載地址下載地址1
     
    上海市普陀區(qū)嵐皋路567號(hào)1108-26室 電話:021-62665073 400-718-7758 傳真:021-62761957 聯(lián)系郵箱:info@bicchina.com
    美國(guó)布魯克海文儀器公司上海代表處 版權(quán)所有  管理登陸 ICP備案號(hào):滬ICP備19006074號(hào)-2 技術(shù)支持:化工儀器網(wǎng)
    主站蜘蛛池模板: 久久se精品一区二区影院| 国产精品视频久久久| 国产精品莉莉欧美自在线线 | 亚洲精品宾馆在线精品酒店| 国产精品爱啪在线线免费观看| 亚洲欧美日韩久久精品| 国产午夜精品久久久久九九电影| 91精品在线看| 国产欧美日韩综合精品一区二区| 一本色道久久88综合日韩精品| 精品91自产拍在线观看 | 欧美日韩精品在线观看| 国产精品色视频ⅹxxx| 欧美精品在线一区二区三区| 国产精品人人爽人人做我的可爱 | 18国产精品白浆在线观看免费| 亚洲精品无码久久一线| 久久精品99无色码中文字幕| 国产精品国产三级国产| 91自慰精品亚洲| 亚洲天堂久久精品| 一区二区三区四区精品视频| 国产一区二区精品久久| 999国内精品永久免费视频| 精品蜜臀久久久久99网站| 精品亚洲aⅴ在线观看| 久久久一本精品99久久精品66| 亚洲国产成人精品无码久久久久久综合 | 自拍偷在线精品自拍偷| 久久99精品久久久久久秒播| 国产精品一区12p| 隔壁老王国产在线精品| 国产精品 综合 第五页| 国产精品日韩深夜福利久久| 精品国产AⅤ一区二区三区4区| 国产在线精品一区二区三区不卡 | 欧美成人精品欧美一级乱黄一区二区精品在线 | 成人区人妻精品一区二区不卡视频| 精品国产a∨无码一区二区三区| 久久精品aⅴ无码中文字字幕重口| 亚洲韩国精品无码一区二区三区 |